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I. Phys: Condens. Matter 4 (1992) 3317-3330. Printed in the UK 

A relationship between nuclear spin relaxation in the 
laboratory and rotating frames for dipolar and quadrupolar 
relaxation 

S W Kelly and C A Sholl 
Physics Depanmenl, University of New England, h i d a l e ,  NSW 2351, Australia 

Received 7 October 1991 

AbslraeL Densily operator lheory of nuclear Spin relaxation due 10 fluctuating magnetic 
dipole w electric quadrupole interaclions is bawd on a differenlial equalion for the den- 
sily operator which, in the weak mllision limit, depends on the lrpeclral density functions 
of the dipolar or quadlupolar fluctuations. It is shown that lhe differential equation for 
relaxation in the mlaling h m e  may be expressed in a similar form 10 that for relax- 
ation in the labralory kame. Expressions for magnetization recoveries in lhe rolating 
hame can then be amply deduced from the laboratory frame expressions by replacing 
lhe spctral density functions in the laboratory frame resulu by linear mmbinations of 
spectral density functions. Ihe method k applied to single-exponential relaxation for the 
dipolar mechanism and to single- and multipleeponential relaxation for the quadlupole 
mechanism for b l h  longitudinal and lranwem magnetization lemveria. 

1. Introduction 

The measurement of nuclear spin relaxation caused by fluctuating magnetic fields 
or electric field gradients at nuclear sites due to diffusional motion has become a 
common technique for studying diffusion on an atomic scale. The basic theory of 
the relaxation, which gives the forms of the magnetization remeries in terms of 
spectral density functions of the fluctuating fields, has been studied extensively in 
the weak collision limit for relaxation in the laboratory frame. The weak collision 
limit corresponds to the situation where many field fluctuations are required to pro- 
duce significant relaxation and ensures that perturbation theory may be used in the 
analysis. Relaxation in the laboratory bame conventionally means relaxation of a 
non-equilibrium magnetization in the presence of a static magnetic field Bo. 

An alternative technique, conventionally called relaxation in the rotating frame, 
corresponds to relaxation of a nonequilibrium magnetization in the presence of the 
static magnetic field Bo together with a transverse magnetic field B, rotating at 
the nuclear Lamor frequency. This paper is concerned with deriving a relationship 
between the theories of relaxation in the laboratory and rotating frames. It is shown 
that, under quite general circumstances, expressions for rotating frame relaxation can 
be obtained from those for laboratory frame relaxation simply by replacing spectral 
density functions in the laboratory frame expressions by new linear combinations of 
spectral density functions. 

m e  theory is based on the use of the density operator which provides a general 
approach to the theory of nuclear spin relaxation. The derivation of the equation 
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of motion of the density operator in the weak collision limit for laboratory frame 
relaxation k, well described by Abragam (1961). Abragam shows that, for dipolar 
interactions between Like spins, both longitudinal and transverse magnetization recov- 
eries are described by single exponentials and derives expressions for the relaxation 
rates in terms of the spectral density functions. The situation is more complex for 
quadrupolar relaxation. The laboratory frame magnetization recoveries are then only 
describable by single exponentials if the nuclear spin I = 1, or in the extreme nar- 
rowing limit corresponding to very rapid diffusion (Abragam 1961), or if the secular 
part of the dipolar interaction can maintain a spin temperature (Wolf 1979). Oth- 
erwise the magnetization recoveries are linear combinations of exponentials (see, for 
example, Andrew and 'Ilnstall 1961, Huhbard 1970, Gordon and Hoch 1978, Kelly 
1991). Considerable effort has been devoted to understanding the many complica- 
tions that can then occur and more information can be deduced about the diffusional 
processes when multipleexponential behaviour can be observed than is the case for 
single-exponential recoveries. 

The theory of relaxation in the rotating frame has been much less extensively 
studied. Expressions have been derived for longitudinal magnetization recoveries for 
like-spin dipolar interactions (Look and Lowe 1966) and for quadrupolar relaxation 
when a spin temperature exists in the rotating frame (Wolf 1979) but little progress 
seems to have been made concerning qUadNp0h relaxation in the absence of a 
spin temperature or the theory of transverse magnetization recoveries in the rotating 
frame. The relationship between relaxation in the laboratory and rotating frames 
derived in this paper enables the details known from laboratory frame relaxation to 
be immediately extended to relaxation in the rotating frame for cases such as these. 

In section 2, the equation of motion of the density operator in the laboratory 
frame is described and it is shown that, by applying appropriate transformations, the 
equation of motion of the density operator in the rotating frame can be expressed in a 
similar form. Some implications of this result for dipolar and quadrupolar relaxation 
are discussed in section 3. 

2. Density operator theory 

The equation of motion for the density operator U of a system of nuclear spins, with 
Hamiltonian E, in a static magnetic field Bo is 

X = X z + X , ( t )  (2) 

where Xz is the Zeeman interaction of the spins with the field Bo and X H , ( t )  is a 
timedependent Hamiltonian which causes the relaxation. For electric qUadNpOlar 
relaxation the density operator may be taken as the operator for a single spin, if 
all the spins are identical and relax independently. For magnetic dipolar relaxation 
the density operator is the operator for a pair of spins with dipolar interaction, if 
each pair of spins relaxes independenfly. For both dipolar and quadrupolar relaxation 
X , ( t )  may be written in the form (Wolf 1979) 
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where A(') are spin operators and F(q)(t) are lattice variables with a stochastic time 
dependence. The detailed forms of the Hamiltonians are @veri in the appendix. 

Equation (1) can be transformed to the frame of reference rotating about Bo 
with frequency w0 = -yBo, where y is the nuclear gyromagnetic ratio, by applying 
the operator transformation 

U' = exp(iWzt/h)U exp(-iWzt/A) (4) 

to each of the operators. The equation of motion then becomes 

A perturbative solution (weak collision limit) of this equation then leads to 
(Abragam 1961, p 279) 

where the spectral density functions J(~~'')(LJ) are 
m 

J(4'99')(u) = F(q)(O)F(q')(t)coswtdt (7) 1, 
and the bar denotes an ensemble average. For a Hamiltonian of the form of equa- 
tion (3), WH:(t) ir 

As discussed by Abragam @p 2%-9), the perturbative solution (6) is only valid 
for an infinite temperature but can also be applied in the weakcollision and high- 
temperature limits if U' is interpreted as the dxerence between U' and the equilibrium 
density operator. 

Writing equation (6) in a Zeeman representation gives a set of coupled differential 
equations for the density matrix elements U:,@ which are the Redfield equations 
(Redfield 1957). If the terms corresponding to up) +U,$') + 0 are omitted from the 
Redfield equations the solutions are a linear combination of exponentials with time 
constants Ti.  It is therefore valid to omit such terms if (wp) + w$'))q B 1 for all 
i , p ,  p', q, q' since they are then rapidly oscillating terms, which average to zero on a 
timescale of the smallest Ti, and will not contribute to relaxation. 

For bath dipolar and quadrupolar relaxation (see the appendix) 

A(9)' = A(')exp(iqw,f) (10) 
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so only a single value of p occurs in equation (9). Equation (6) then becomes, after 
omitting the oscillating terms, 
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where J ( q ) ( w )  = J[qt-q)(w). The conditions for the validity of this equation are 
that ( q  - q’)w, B Ti for q # q’ and also that T, > T ,  where T is the mean 
time between fluctuations of F ( q ) ( t ) ,  which comesponds to the weak collision limit. 
Equation (11) describes the evolution of the density operator in a frame of reference 
rotating about Bo at the resonant frequency wo and is the basis of evaluating the 
magnetization recoveries, both longitudinal and transverse, in the laboratoly frame 
for any non-equilibrium magnetization as discussed in the following section. 

For relaxation in the presence of the static field Bo, together with a magnetic 
field of magnitude B, rotating at the resonant frequency U, transverse to the static 
field Bo, the Hamiltonian (2) is replaced by 

x=31z+71,(1)+xH,(t) (12) 
where ‘H,(1) is the Hamiltonian for the interaction of the spins with the rotating field 
(see the appendix). The density operator in the presence of X , ( t )  will be denoted 
by p and the equation of motion of p in the rotating frame of reference is then 

where ‘Hi is independent of 1. Applying the transformation 

U“ = exp(iX:t/h)U’exp(-i31~t/h) (14) 
to equation (13) gives 

This interaction representation describes motion in the doubly rotating frame of 
a frame rotating about B, which is rotating about Bo. Eguation (15) therefore 
describes relaxation in the rotating frame analogously to equation (5) describing 
relaxation in the laboratoly frame. 

The form of 31;’ may be written as 

similarly to equations (8) and (9). It is shown in the appendix that the Bp) may be 
written as linear combinations of A(q) and that Cl$) = qw, + pw, .  The solution of 
equation (15) may be written down immediately by analogy with equation (6) and is 
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In the absence of the oscillating terms corresponding to q + q' # 0 and p + p' # 0 
the solution of equation (18) is again a linear combination of exponentials, with time 
constants Tip. It is therefore valid to omit the oscillating terms if both (q+  p')wo > 
T P  and (p  + p')wl > TP for all q,  q',p,p'  and i. The second inequality is the 
most stringent if, as is usually the case, wI K wg. The validity of equation (18) also 
requires that T,p > T corresponding to the weak collision limit. Equation (18) in the 
absence of the willating terms is 

similarly to equation (11). 
It is helpful to make a further transformation to this equation given by 

U = exp(ix1,/2) ~ e x p ( - i ? r 1 ~ / 2 )  (20) 
which corresponds to a rotation of x/2 about the y axis. The reason for this trans- 
formation is that it can be shown that (see the appendix) the transformed operators 
h?) are of the form 

(21) B(') = ,(9)A(P) 
P P 

where cp) = cLi9) are constants and A(p) are the operator; in equation (3). Applying 
the transformation (20) to equation (19) and using equation (21) gives 

If w1 Q wo the relation (23) reduces to 

J0(w1,wo)  = p ( 0 )  + !p)(2wn) 

J*(w1,wo) = 2 l J ( l ) (wn)  + $J(2)(2w0) 

J*(wl,wo) = $7(0)(2w1) + 2J(')(w0) + $J(2) (2w0) .  

(24) 

(25) 

(26) 

Equation (22) is now identical in form to equation (11) if J(9) (qw0)  is replaced by 
Jq(wI,wo). This is an extremely useful general result. It means that the solution of 
equation (22) for b", the density operator in the doubly rotating frame for relaxation 
in the presence of 'Hr(t) ,  can be simply deduced from the solution of equation (11) 
for d ,  the density operator in the singly rotating frame for relaxation in the absence 

The theory Of relaxation in the absence of 'H,(t) has been studied extensively and 
the general result above means that corresponding results for relaxation in the rotating 
frame can be deduced from the theory of relaxation in the laboratory frame simply 
by replacing J(9)(qw0) in the appropriate expressions by J,(w,,w,). Examples are 
discussed in the following section in the limit w1 Q wo for simplicity. The more 
general case can be similarly analysed using equation (23). 

of 'HJt).  
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3. Relaxation 

S W filly and C A  Shdl 

In the absence of a rotating field, a spin system which has been disturbed from 
equilibrium will relax according to 

(I) = Tr{ul) (27) 

where U is the laboratory frame density operator. The component of this equation 
along the direction of the magnetic field Bo, corresponding to longitudinal relaxation, 
is 

m 

where U&- is the Zeeman representation solution of equation (11) for the density 
operator m this rotating frame of reference. A non-equilibrium magnetization will 
precess about Bo at the Larmor frequency and the transverse component will relax, 
in the rotating frame, according to 

( r J  = Tr{o'L} = $E(Z:U;+,,, + Z;U; - , , , )  (29) 
m 

where 22 = [ I ( I + 1 ) - a ( a * 1 ) ] " 2 .  

a non-equilibrium spin system, in the frame rotating with B,, is 
In the presence of a field B, rotating at the resonant frequency, the relaxation of 

(I}' = Tr ( p ' l )  (U)) 

where p is the rotating frame density operator. The component of this equation along 
the field B,, corresponding to longitudinal relaxation in the rotating frame, is 

( r J  = Tr{p'I=) = T r { p " l , )  = T r { p " I Z }  = x a p ; , ,  (31) 
0 

where the primes correspond to the transformations described in section 2 A non- 
equilibrium magnetization will precess about B, at a frequency w1 = -YB, and the 
component transverse to B, will relax, in this doubly rotating frame, according to 

(I,)" = Tr{p"l,} = -Tr{p"I=} = -1 * ~ ( z c t ~ ; + l , m  + z;/j:-,,,J. (32) 
D 

As shown in section 2, the solution of the equation for p" can be obtained simply 
from that for U' by appropriate substitutions for the spectral density functions. It 
therefore follows that, since the pairs of equations (28) and (31), and (29) and (32) 
are of similar forms, the relaxation expressions in the presence of a rotating field 8, 
can be deduced immediately from those in the absence of B, provided the initial 
conditions are also the same. Some examples are given below. 
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3.1. S)in-Iemperature Iongitudinal rela*;ation 

If the secular part of the magnetic dipolar interaction between nuclei is sufficiently 
effective., the spin system can exist in quasi-equilibrium, corresponding to a spin 
temperature Ts, as the longitudinal relaxation occuw. The density matrix is then of 
the form 

U = exp(-Zz/kT,)/Tr{exp(-Zz/kq)) (33) 

for a strong Zeeman field (Wolf 1979). The longitudinal relaxation in the absence 
of a rotating field B, is then described by a time-dependent Ts, with relaxation 
being caused by the non-secular dipolar interaction or quadrupolar relaxation. Us- 
ing the result that U' = U and substituting the high-temperature approximation for 
the expression (33) into equation (11) yields a first-order differential equation for 
T-l(f). Since the longitudinal magnetization is proportional to T,-l this analysis 
shows that the longitudinal magnetization approaches equilibrium according to a sin- 
gle exponential with time constant TI, the spin-lattice relaxation time, given by the 
HebelSlichter equation (see, for example, Wolf 1979). Evaluating this equation for 
dipolar relaxation gives 

and for quadrupole relaxation gives 

where J g ) ( w )  and J k ' ( w )  are the dipolar and quadrupolar spectral density functions 
respectively. 

The corresponding expressions for the spin-lattice relaxation time T,,  in the 
rotating frame can be written down immediately, using the substitutions (24) to (26), 
for the case where a spin temperature exists in the rotating frame. The results are 

The dipolar expression (36) agrees with the result obtained by Look and Lowe (1966). 

3.2. Dipoar relaration 

An alternative analysis of relaxation which does not require the assumption of a spin 
temperature is due to Abragam (1961). This approach uses the equation of motion 
for the density operator to develop a differential equation for an observable and can 
be applied to both longitudinal and transverse dipolar relaxation. The longitudinal 
relaxation result is identical to the spin-temperature theoly. The transverse relaxation, 
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in the absence of a rotating field, is also described by a single-exponential recovery 
for like spins, with time constant T2, the transverse relaxation time, given by 

S W Kelly and C A  Sholl 

As expected physically, this is identical to the expression for T;d (D) when U, = 0. 
Longitudinal relaxation in the rotating frame is achieved experimentally by ap- 

plying a a / 2  pulse which rotates the equilibrium magnetization through a / 2  from 
the direction of Bo and then phase-shifting the B, field to achieve spin locking. 
The magnetization in the rotating frame then relaxes along the direction of B,. If 
the phase-shift of the 8, field is not a / 2 ,  the magnetization in the rotating frame 
will precess about B, and relaxation of magnetization component transverse to B, 
will occur. The time constant for this single-exponential relaxation is T2,,( D), the 
transverse relaxation time in the rotating frame. The expression for it follows from 
equation (38) by making the substitutions given by equations (24) to (26). The result 
is 

3.3. Quadrupolar rehmtion 

It is well known that, in the absence of a spin temperature, the magnetization recov- 
eries in a static magnetic field Bo may be a linear combination of exponentials for 
quadrupolar relaxation. The Redfield equations obtained by writing equation (11) in 
a Zeeman representation, give a set of ( 2 1  + 1)’ coupled linear differential equa- 
tions for the density matrix elements u ; , ~ .  The solution of these equations is a 
linear combination of exponentials with coefficients determined by initial conditions 
corresponding to the manner in which the spin system is disturbed from equilibrium. 
The magnetization recoveries may then be obtained from equations (28) and (29). 

In the absence of a static quadrupole interaction the Zeeman energy levels are 
equally spaced and the entire magnetization may be disturbed from equilibrium and 
its recovery observed. There are then only I + contributing exponentials for half- 
integral I and I exponentials for integral I (Hubbard 1970). 

For I = 1 the result for longitudinal relaxation is the same as the spin-temperature 
result and the spin-lattice relaxation times in the laboratory and rotating frames 
are given by equations (35) and (37) respectively. The transverse relaxation in the 
laboratory frame has a relaxation time given by (Hubbard 1970) 

Making the substitutions given by equations (24) to (26) then gives the transverse 
relaxation time in the rotating frame as 
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For Z = $ the laboratory frame longitudinal and transverse magnetizations ap- 
proach equilibrium according to (Hubbard 1970) 

( I , )  = 0.8e-’1‘ + O.Ze-““ 

(I,)’ = 0.6e-’I‘ + 0.4e-”‘ 

(42) 

(43) 

respectively when the entire magnetization is disturbed from equilibrium and its re- 
covery observed. The parameters ai and bi are 

2 

b2 = & (7) [ 4 J g ’ ( w 0 )  + Jg’(2wo)] .  

The corresponding magnetization expressions in the rotating frame have the Same 
coefficients but the ai and b; become 

In the extreme narrowing l i t  wo - 0 and w1 - 0 all of the a i ,  b j ,  a i p ,  b;, become 
identical for a polycrystal for which the spectral density functions J(O), J(I ) ,  Jc2) are 
in the ratio 61:4. 

For I > $ the coefficients of the exponentials, as well as their exponents, are 
dependent on the spectral density functions. An analytic solution for relaxation in 
the laboratory frame is possible for I = 2 (K6rblein et ai 1985) but for I > 2 the 
analysis must he accomplished numerically. Detailed results for the laboratory frame 
have k e n  obtained by Gordon and Hoch (1978) and Kelly (1991). AI1 of these results 
can he extended to the corresponding relaxation in the rotating frame by employing 
the spectral density substitutions given by equations (24) to (26). 

If the quadrupolar nuclei are in non-cubic environments, so that there is a static 
quadrupole interaction in the spin Hamiltonian, the situation is much more com- 
plex The general analysis of the laboratory frame relaxation for this case has not 
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been achieved because of the difficulties associated with manipulating exponentials 
of the sum of non-commuting operators, but a general feature of the results is that 
there are additional exponentials which contribute to the magnetization recoveries. 
The presence of the static quadrupole interaction destroys the equal spacing of the 
Zeeman energy levels which has two important consequences. Firstly, it inhibits the 
secular dipolar interaction from maintaining a spin temperature, and so the multiple- 
exponential recoveries are more likely. Secondly, it allows selective excitation and 
observation of particular pairs of energy levels (Andrew and llnstall 1961, Gordon 
and Hoch 1978, Kelly et a1 1989, 1991, Kelly 1991). A common approximation in the 
analysis in this case is to take accnunt of the static quadrupole effects in determining 
the initial conditions and which levels are observed in magnetization recoveries, but to 
neglect the effect of the static quadrupole interaction on the relaxation and to neglect 
the additional exponentials. "hiis has the effect of giving the same exponentials as in 
the absence of a static quadrupole interaction, but with different coefficients. Such 
cases which are relevant in the rotating frame could also easily be deduced from the 
laboratory frame results by using the spectral density substitution relations derived in 
section 2 

S W Kelly and C A  Sholl 

4 Discussion 

In the weak collision limit the recoveries of the longitudinal and transvene magne- 
tizations are all either single exponenthis or a linear combination of exponentials, 
with time constants Ti, for relaxation in both the laboratory and rotating frames. The 
reciprocal time constants T;' are linear combinations of spectral density functions 
J(q ) (w) .  For a polycrystal the spectral density functions for p = 0 , 1 , 2  are in the 
ratios 6:1:4 but this is not the case for single crystals and they then also depend on 
the direction of the static field Bo (Sholl 1986). It should also be noted that the 
dipolar and quadrupolar spectral density functions are differcnt for the same diffu- 
sion mechanism. This k because the dipolar functions describe the relative motion 
of a pair of interacting spins and are therefore two-particle functions, whereas the 
quadrupolar functions describe the correlation between the total electric field gradi- 
ent at a nuclear site at different times and the product of the sums of field gradient 
components results in two- and three-particle functions (Sholl 1967). 

The usual procedure in analysing nuclear spin relaxation data is to use a spectral 
density function obtained either numerically or analytically (see for example, Sholl 
1988) for some diffusion model and to deduce the parameters in the diffusion model 
from the data. It would be useful though to be able to deduce the spectral density 
functions directly from the spin relaxation data and attempts at doing this have been 
made by Halstead d a1 (1982). The observation of single-exponential magnetization 
recoveries in the rotating frame and multipleexponential recoveries in both the lab- 
oratory and rotating frames are especially valuable because they can aUow particular 
spectral density functions to be obtained directly. The connection between the labo- 
ratoly and rotating frame relaxation expressions derived here provides the theoretical 
basis for analysing the rotating frame results. The analysis is particularly simple for 
I s. 

The observation of multipleexponential recoveries requires the absence of a spin 
temperature. This will be the case if the energy consewing flip-flop dipolar interaction 
between pairs of spins is weak compared with the quadrupolar interactions causing 

2 
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the relaxation. An example is if the dipolar interaction is behveen unlike spins since 
the flip-flop process does not then conserve energy. An extreme case of this is P-NMR 
(Ackermann et a1 1983) in which relaxation of a transmuted nucleus is studied. 

Appendix. Hamiltonians 

For electric quadrupolar relaxation the one-particle Zeeman Hamiltonian of a spin I 
in a magnetic field Bo is 

7f, = hot* (52) 

where wo = -rBo and y is the nuclear gyromagnetic ratio. The relaxation Hamilto- 
nian 7fl(t) is 

The spin operators A(9)(1)  are 

A(*') = $JQ( I ,  I ,  + I, I , )  (55) 

(56) A(*2) = 36 I 2  
4 9 3 :  

where 69 = - e Q / 4 1 ( 2 1  - 1) and Q is the nuclear electric quadrupole moment. 
The lattice functions ~ ( q ) ( t )  are 

where vij are the electric field gradient components at a nuclear site relative to an 
orthogonal set of axes I, y, z with the z axis along the direction of the magnetic field 

For magnetic dipolar relaxation the two-particle Zeeman Hamiltonian for a pair 
BO. 

of identical spins I and S is 

?fz = h O ( I ,  + SS). 
The relaxation Hamiltonian 7f, ( I)  is 

2 

7 f l ( t )  = A ( q ) ( 1 , S ) F ( 9 ) ( t ) .  
q = - 2  
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The spin operators A(q) ( I ,S )  are 

S W Keuy and C A  Sholl 

A(o)= -6D(31 ,S , - I .S )  2 

A(*') = $6,1iS* 

where 6, = -y2h2. The lattice functions F ( q ) ( t )  are 

F ( O )  = r-3( 1 - 3 cos2 e )  

F(*') = rb3 sin e cos 0 exp(ki+) 

W2) = ~ - ~ s i n ' e e x p ( i 2 i + )  

where r = (r, e,+) is the internuclear vector relative to the direction of the magnetic 
field Bo. The above forms of the Hamiltonians are chosen, following Wolf (1979), 
to express the dipolar and quadrupolar ' H , ( t )  in similar forms. If the electric field 
gradient in equations (57) to (59) was due to a point charge the expressions (57) to 
(59) become proportional to the expressions (65) to (67). 

The transformation of 7 i , ( t )  to the rotating frame leads to the result 

A(q)' = A(q) exp(iqw,t) (68) 

for both the one-spin quadrupolar operators and two-spin dipolar operators (Abragam 
1961, Wolf 1979). 

The one-panicle Hamiltonian ' ~ ~ ( t )  for a single nucleus interacting with a rotating 
magnetic field of magnitude B, transverse to the static field is 

7 iH , ( t )  = hw,(I,cosw,t+ Iys inwot )  =hw,exp(-iwotIz)I,exp(iw,tI,) (69) 

where w ,  = - Y E ,  and wo is the resonant frequency. In the rotating frame of 
reference 7iH,( t )  therefore becomes X : ( t )  = hw,I,. These results are also valid for 
the two-particle form of 'HH, ( t )  if each operator I ,  is replaced by Ii + Si. 

The transformation of A(9) to the doubly rotating frame for the one-particle 
Hamiltonian is 
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where C2p) = quo + pw, and Bp ( q )  = ( - l ) p - q  
b e a r  combinations of A(q) and are 

The BPI can be expressed as 

BP) = = f (A(0 )  + A(2) + A(-2)) (72) 

& Bi; = -2B!2,) = &-(A(') + A ( - l ) )  - L(A(2) 2 - A(-2)) 

Bf? = Bt)  = 0. 

(73) 

(74) 

(75) 

= &+E!:) = -2B(') f2 - - FA & : (A( ' )  - A(-1)) - L(A(2) 8 + A(-2) )  

A similar evaluation for the two-panicle Hamiltonian for dipolar interactions gives 
the same result. 

The transformation of B$) by a rotation of ?r/2 about the y axis is 

h$) = exp(i?rl,/2)Bp)exp(-ial,/2) (76) 

Evaluating this transformation for each of the terms in the equations (72) to (75) 
gives the simple result 

= c(g)A(P) P (77) 

where cp) are constants given by cp) = cCi9) and the matrix 

P\q -2 -1  0 1 2 
0 -3/4 0 -112 0 -3/4 
1 -114 -112 0 -112 114 
2 114 1 -112 1 114.. 

~n explicit expression for c p )  is 

c(T) P = T r { ~ i ( 9 ) A ( - P ) } / T I { A ( P ) A ( - P ) }  (78) 

which is obtained by using equation (71) at t = 0, the transformation (76), equa- 
tion (77) and the result that Tr{A(P)A(P')) is zero for p # p'. 

The above results are valid for both dipolar and quadrupolar interactions and 
equation (78) is valid more penerally for any Hamiltonian of the form of equation (53) 
and for which Tr{A(p)A(p I} is zero for p # p'. 
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